periodic function

Also found in: Thesaurus, Medical, Encyclopedia, Wikipedia.

periodic function

(ˌpɪərɪˈɒdɪk)
n
(Mathematics) maths a function, such as sin x, whose value is repeated at constant intervals
References in periodicals archive ?
As a function that controls the periodic time-variability of the model q(k) it is assumed following periodic function
t + T) is a periodic function of time, in the steady state (at s = const) the solution of the system of equation (3) is T-periodic dependences of the vector [?
Objective: The origin of Harmonic Analysis goes back to the study of the heat diffusion, modeled by a differential equation, and the claim made by Fourier that every periodic function can be represented as a series of sines and cosines.
A function f : T x X [right arrow] X is called an almost periodic function in t [member of] T uniformly for x [member of] X if the e-translation set of f
First, let us introduce the notion of almost periodic function used throughout this paper.
where [delta](x) is a continuous periodic function of period 1, mean zero, small amplitude and Fourier expansion
This says that a periodic function can be approximated by a sum of sinusoidal signals with appropriated coefficients and frequencies, as shown in
The Fourier series is aimed to decompose a periodic function into the sum of pure oscillating signals, namely sines, cosines, or complex exponentials.
Let r be the periodic function, of least period 1, defined on [0,1) by
i](t) is a periodic function of t (a more precise description of the periods of the coefficients [E.
Nanotemplates are structures with nanometer sized periodic function with high versatility that promise to improve devices and medicine, such as miniaturization of electronics and capturing biological species for detection.

Site: Follow: Share:
Open / Close