analytic function

(redirected from Analytic functions)
Also found in: Encyclopedia.

analytic function

n. Mathematics
American Heritage® Dictionary of the English Language, Fifth Edition. Copyright © 2016 by Houghton Mifflin Harcourt Publishing Company. Published by Houghton Mifflin Harcourt Publishing Company. All rights reserved.
Translations
analytická funkce
analitička funkcija
analytisk funktion
References in periodicals archive ?
It follows from the classical Titchmarsh convolution theorem and uniqueness theorem for analytic functions that ker ([K.sub.f]) = {0}.
Srivastava: Argument estimates of certain analytic functions defined by a class of multiplier transformations, Math.
This collection contains four lectures delivered during the February 2010 school, a survey of recent developments in the spectra of algebras of analytic functions, and five research papers on weighted mixed norm spaces, holomorphic self-maps of a disk intertwining two linear fractional maps, and Volterra type operators on Bergman spaces.
Cross-platform analysis can be performed using Greenplum SQL and advanced analytic functions accessing data on HDFS.
The system would then perform a range of analytic functions.
The regular solutions of the elliptic system of partial equations (1.3) define a class of so-called F-analytic functions that is an important connection between the set of analytic functions and the set of Vekua generalized analytic functions.
Then for f = h + [bar.g] [member of] [S.sub.H](n) we may express the analytic functions h and g as
Srivastava, The Hardy space of analytic functions associated with certain one-parameter families of integral operators, J.
The unified SQL-MapReduce analytic framework, advances in in-database analytics together with Aster Data's suite of 1000+ MapReduce-ready analytic functions, delivers a substantial breakthrough in delivering richer, high performance analytics on large data volumes.
Let [[PI].sub.+] = {z [member of] C : Imz > 0} be the upper half-plane in the complex plane C and H([[PI].sub.+]) the space of all analytic functions on [[PI].sub.+].
They also report some recent developments in the theory of multivariable and q-orthogonal polynomials, weak Hilbert's 16th problem, singularity theory, tournaments in flag manifolds, and spaces of bounded analytic functions on the unit circle.
Recall that these are analytic functions of z and v for z [member of] C \ (- [infinity], 0] (the complex plane cut along the negative real axis) and v [member of] C.