Poisson distribution

(redirected from Poison statistics)
Also found in: Thesaurus, Medical, Financial, Encyclopedia.
Related to Poison statistics: Poisson statistics

Pois·son distribution

 (pwä-sôN′)
n. Statistics
A probability distribution which arises when counting the number of occurrences of a rare event in a long series of trials.

[After Siméon Denis Poisson (1781-1840), French mathematician.]
American Heritage® Dictionary of the English Language, Fifth Edition. Copyright © 2016 by Houghton Mifflin Harcourt Publishing Company. Published by Houghton Mifflin Harcourt Publishing Company. All rights reserved.

Poisson distribution

(ˈpwɑːsən)
n
(Statistics) statistics a distribution that represents the number of events occurring randomly in a fixed time at an average rate λ; symbol P0(λ). For large n and small p with np = λ it approximates to the binomial distribution Bi(n,p)
[C19: named after S. D. Poisson]
Collins English Dictionary – Complete and Unabridged, 12th Edition 2014 © HarperCollins Publishers 1991, 1994, 1998, 2000, 2003, 2006, 2007, 2009, 2011, 2014

Pois•son′ distribu`tion

(pwɑˈsoʊn, -ˈsɔ̃)
n.
a probability distribution whose mean and variance are identical.
[1920–25; after S. Dutch. Poisson (1781–1840), French mathematician and physicist]
Random House Kernerman Webster's College Dictionary, © 2010 K Dictionaries Ltd. Copyright 2005, 1997, 1991 by Random House, Inc. All rights reserved.
ThesaurusAntonymsRelated WordsSynonymsLegend:
Noun1.Poisson distribution - a theoretical distribution that is a good approximation to the binomial distribution when the probability is small and the number of trials is large
distribution, statistical distribution - (statistics) an arrangement of values of a variable showing their observed or theoretical frequency of occurrence
statistics - a branch of applied mathematics concerned with the collection and interpretation of quantitative data and the use of probability theory to estimate population parameters
Based on WordNet 3.0, Farlex clipart collection. © 2003-2012 Princeton University, Farlex Inc.