Theta function

(redirected from Theta functions)
Also found in: Encyclopedia.
Related to Theta functions: Theta series
(Math.) one of a group of functions used in developing the properties of elliptic functions.

See also: Theta

Webster's Revised Unabridged Dictionary, published 1913 by G. & C. Merriam Co.
References in periodicals archive ?
The topics include theta functions and holomorphic Jacobi forms, classical Maass forms, differential operators and mock modular forms, examples of harmonic Maass forms, Ramanujan's mock theta functions, the mock modular Eichler-Shimua theory, asymptotics for coefficients of modular-type functions, harmonic Mass forms as arithmetic and geometric generating functions, generalized Borcherds products, and representation theory and mock modular forms.
The study of theta functions and theta constants has a long history, and they are very important objects in arithmetic and geometry.
Zhang, "Riemann theta functions periodic wave solutions and rational characteristics for the nonlinear equations," Journal of Mathematical Analysis and Applications, vol.
Ojah, "Analogues of Ramanujan's partition identities and congruences arising from his theta functions and modular equations," Ramanujan Journal, vol.
A Brief Introduction to Theta Functions (reprint, 1961)
Tian and Zhang gave the exact periodic solutions for some evolution equations with the aid of the Hirota bilinear method and theta functions identities [18,19].
As usual, the classical Jacobi theta functions are defined as follows,
Undoubtedly the most famous are mock theta functions. In 1919, Ramanujan returned to India, after about five years in England.
Ramanujan's letter to Hardy described several new functions that behaved differently from known theta functions, or modular forms, and yet closely mimicked them.
In four cases it is already known that the product of two distinct Jacobian theta functions having the same variable z and the same nome q is a multiple of a single Jacobian theta function, with the multiple independent of z.
A selection of 10 papers from it consider such topics as self-dual codes and invariant theory; vector bundles in error-correcting for geometric Goppa codes; combinatorial designs and code synchronization; real and imaginary hyper-elliptic curve cryptography; divisibility, smoothness, and cryptographic applications; a variant of the Reidemeister-Schreier algorithm for the fundamental groups of Riemann surfaces; theta functions and algebraic curves with automorphisms; enumerative geometry and string theory; and the cryptographical properties of extremal algebraic graphs.
The close connection between q-calculus on the one hand, and elliptic functions and theta functions on the other hand will be shown.