###
Texas Courses Update

Professional development courses for CPE credit are transitioning to a new course platform—TEALearn; professional development courses are no longer available through the Texas Gateway. As part of this process, TEA has reviewed courses that were previously offered through the Gateway. This resource provides an update on current status and availability of Classic Gateway courses.

###
Covalent Bonding: Electron Dot Diagrams

Given descriptions, diagrams, scenarios, or chemical symbols, students will model covalent bonds using electron dot formula (Lewis structures).

###
Using Theoretical and Experimental Probability to Make Predictions

Given an event to simulate, the student will use theoretical probabilities and experimental results to make predictions and decisions.

###
Types of Science Investigations

Students will distinguish between descriptive, comparative, and experimental investigations.

###
Experimental Design

Given investigation scenarios and lab procedures, students will identify independent variables, dependent variables, constants, and control groups.

###
Using Multiplication by a Constant Factor

Given problems involving proportional relationships, the student will use multiplication by a constant factor to solve the problems.

###
Predicting, Finding, and Justifying Data from a Table

Given data in table form, the student will use the data table to interpret solutions to problems.

###
Data Organization

Given field and laboratory scenarios and laboratory data, students will construct data tables and graphs, using repeated trials and means to organize data.

###
Conclusions and Scientific Explanations

Given laboratory investigation data, students will determine the best conclusion based upon that data.

###
Measurement

Given investigation quantitative data, students will determine its degree of precision and/or accuracy and causes for uncertainties in measured data.

###
Solving Systems of Equations with Graphs

Given verbal and/or algebraic descriptions of situations involving systems of linear equations, the student will solve the system of equations using graphs.

###
Analyzing the Effects of the Changes in "a" on the Graph y = ax^2 + c

Given verbal, graphical, or symbolic descriptions of the graph of* y = ax^2 + c*, the student will investigate, describe, and predict the effects on the graph when *a* is changed.

###
Predicting, Finding, and Justifying Data from Verbal Descriptions

Given data in a verbal description, the student will use equations and tables to solve and interpret solutions to problems.

###
Solving Quadratic Equations Using Concrete Models

Given a quadratic equation, the student will use tiles to factor and solve the equation.

###
Solving Quadratic Equations Using Algebraic Methods

Given a quadratic equation, the student will solve the equation by factoring, completing the square, or by using the quadratic formula.

###
Matter and Energy—Chemical Reactions

Given descriptions or illustrations, students will investigate how evidence of chemical reactions indicates that new substances with different properties are formed.

###
Taxonomy Standards

Given examples, students will recognize the importance of taxonomy to the scientific community.

###
Taxonomy: Major Groups

Given illustrations or descriptions, students will determine the classification of organisms into domains and kingdoms.

###
Relationships Between Organisms: Food Chains, Webs, and Pyramids

Given illustrations, students will analyze the flow of matter and energy in food chains, food webs, and ecological pyramids.