semimajor axis


Also found in: Thesaurus, Encyclopedia, Wikipedia.

sem′i•ma′jor ax′is

(ˈsɛm iˈmeɪ dʒər, ˈsɛm aɪ-, ˌsɛm i-, ˌsɛm aɪ-)
n.
1. one half the major axis of an ellipse.
2. one half the major axis of the ellipse that one celestial body describes around another, equivalent to the mean distance between the two bodies.
[1925–30]
ThesaurusAntonymsRelated WordsSynonymsLegend:
Noun1.semimajor axis - one-half the major axis of an ellipse; the distance from the center of an ellipse to one end
axis - a straight line through a body or figure that satisfies certain conditions
major axis - the longest axis of an ellipse or ellipsoid; passes through the two foci
Translations
Mentioned in ?
References in periodicals archive ?
where a and b are the semimajor axis and semiminor axis, respectively.
ISS orbit Semimajor axis (km) 6780 Eccentricity (degrees) 0 Ascending node longitude (degrees) -94.354 Inclination (degrees) 51.64 Mean anomaly (degrees) 254.215 Table 5: Operational temperature limits.
The most unfavourable case of congruence examination for a point concerns the direction of the semimajor axis of the confidence ellipse because in that direction the determination error for a point position is maximal.
The meaning and role of Keplerian elements Symbol Meaning Role [a.sub.s] Semimajor axis Define the size and shape of [e.sub.s] Eccentricity the trajectory [OMEGA] Longitude of the Define the orientation of the ascending node orbital plane.
Therefore, using such a system, it is possible to compensate for the semimajor axis of the ellipse of the hodograph of the induction vector of the magnetic field and to obtain a sufficiently high screening efficiency for a weakly polarized MF.
The sizes of 3D grain can be described by the equivalent radius r, semiminor axis radius [r.sub.2], semimajor axis radius [r.sub.1], and major axis radius [r.sub.3].
[18] estimate the BC by comparing the change in semimajor axis according to TLE data with the change in semimajor axis due to drag computed by propagation using an initial state from TLEs.
In the subsequent sections a simple elliptical orbit configuration is presented to get insight of elliptical orbit and defines some of the important parameters such as orbital position, eccentricity, and semimajor axis. During satellite launch, satellite is subjected to various external loads resulting from vibroacoustic noise, booster ignition and burn out, propulsion system engine vibration, steady-state booster acceleration, and much more.
where [alpha] and [beta] denote the semimajor axis and semiminor axis of the ellipse, respectively, and d is the maximum distance between the chord and the elliptical arc that corresponds to the chord.
Table 1 presents orbital elements: a: semimajor axis, e: eccentricity, i: inclination, [OMEGA]: longitude of the ascending node, [omega]: argument of perihelion, and M: mean anomaly The orbits are computed from 569 astrometric positions from which 8 observations were rejected as outliers, and also on 29 radar observations with 4 observations rejected as outliers.
We find the semimajor axis, semiminor axis, and center of the ellipse.
By using both the semimajor axis and the orbital period as constraints, one obtains a linear regression fit with [R.sup.2] > 0.999.