Stable equilibrium

(redirected from stable equilibria)
Also found in: Medical, Legal, Encyclopedia.
Related to stable equilibria: stable equilibrium
(Mech.) the kind of equilibrium of a body so placed that if disturbed it returns to its former position, as in the case when the center of gravity is below the point or axis of support; - opposed to unstable equilibrium, in which the body if disturbed does not tend to return to its former position, but to move farther away from it, as in the case of a body supported at a point below the center of gravity. Cf. Neutral equilibrium, under Neutral.

See also: Stable

References in periodicals archive ?
Figure 1 shows that for this case there is an empty intersection of the correspondence with the region and hence there are no stable equilibria other than the MSV solution.
The conclusion is that all the equilibria in which unemployment depends on efficiency considerations (cases in which the traditional approach would determine full employment) are unstable, whereas all the stable equilibria correspond to cases in which there would be unemployment even without efficiency wages.
These points at which the ball stops moving represent stable equilibria.
Here, there are two locally stable equilibria, one symmetric (with half the manufacturers located in each region) and one core periphery.
i]]) crosses the 45[degrees] line from above are stable with respect to a small perturbation of the importers' beliefs; therefore, there are a minimum of two stable equilibria.
There could be a single stable equilibrium or more than two stable equilibria.
These parameter values are not intended to be close representations of particular natural populations, but have been chosen to generate a range of patterns of dynamics, including stable equilibria and cyclical behavior with various periodicities.
Hastings and Powell 1991) leaves little doubt that there will be choices of functions and regions of parameter space for which chaotic dynamics can occur; however, the primary focus of this paper is stable equilibria, and we restrict our analysis to establishing that there is a wide range of situations in which unique, stable equilibria can be expected.
A genetic system admitting of two distinct stable equilibria under natural selection.
It turns out that for a very broad class of density functions, there can be multiple stable equilibria.
When this happened, a ceiling was imposed below the equilibria to see whether the market activity stayed at the ceiling or moved away from the ceiling in the direction of the model's nearest stable equilibria.